MWM-Array and MR-MWM-Array Eddy Current Testing for Piping and Vessels

> Neil Goldfine, Todd Dunford, Andrew Washabaugh, Stuart Chaplan, Karen Diaz JENTEK Sensors, Inc., 121 Bartlett Street, MA 01752

Example Problems: From Simple to Complex

Example Problems: From Simple to Complex

2-Unknowns Conductivity and Liftoff (σ and h); or Permeability and Liftoff (μ and h)	3-Unknowns Conductivity, thickness and Liftoff $(\sigma, \Delta_c \text{ and } h)$		$\begin{array}{c} \textbf{4-Unknowns} \\ \text{Coating conductivity,} \\ \text{coating thickness,} \\ \text{substrate} \\ \text{conductivity,} \\ \text{and Liftoff} \\ (\sigma_c, \Delta_c, \sigma_s \text{ and } h) \end{array}$	3 or 4-Unknowns Cladding thickness, gap thickness, and Liftoff, add substrate magnetic permeability (to detect substrate cracks also) $(\Delta_c, \Delta_g, h \text{ and } \mu_s)$
(a)	(b)		(c)	(d)
3-Unknowns permeability, thickness and Liftoff (μ , Δ_c and h) assume conductivity value		4 or 5-Unknowns Weather jacket thickness (assume w/ conductivity), insulation thickness, pipe thickness, and Liftoff and pipe permeability (or estimate μ_p at nominal Δ_p ($\Delta_{wj}, \Delta_i, \Delta_p, h, + \mu_p$)		5-Unknowns Concrete thickness (ho+hj), wire mesh permeability, vessel permeability, lift-off ho (= distance to mesh) $(\Delta_c, \mu_m, \mu_s, \Delta_s h_o)$

Three elements of the solution

1. Sensors: MWM[®]-Arrays & **MR-MWM-Arrays**

• Paradigm shift in sensor design (first priority is predictable response based on physics-based modeling)

3. Multivariate Inverse Methods (MIMs)

- Rapid, autonomous data analysis Performs multivariate inverse method (MIM) using precomputed databases
 - Defect Images
 - Performance Diagnostics
 - Noise Suppression

2.Parallel Instrumentation

- 3 frequencies simultaneously
- All channels simultaneously
- Wide bandwidth, accurate impedance

MWM sensor

Analysis

h (lift-off)

Solve Multiple Unknown Problems

МІМ 0.00 Hz - Imaginary vs. Real (multiple grids 10.00 Hz, Conductivity = 10.000 %/ACS, Permeability = 40.000 rel., n 10.00 Hz, Conductivity = 10.000 %/ACS, Permeability = 100.00 rel., n (Thickness) ginary

Real (Re)

Definition of Real and Imaginary Parts of the complex Transimpedance Z=v/jωi

ω=2πf

- GridStation Lattices for MR-MWM-Array wall loss imaging
- Used for external and internal wall loss imaging

 a) 2- Unknowns: conductivity (σ) and lift-off (h), with magnetic permeability (μ) assumed constant

Copyright © 2019 JENTEK Sensors All Rights Reserved.

MWM-Array

h (lift off)

m (permeability) *s* (conductivity)

a) 2- Unknowns: magnetic permeability (μ) and lift-off (h), with conductivity (σ) assumed constant

Copyright © 2019 JENTEK Sensors All Rights Reserved.

MWM-Array

h (lift off)

b) 3- Unknowns: coating conductivity, coating thickness, and lift-off, using hierarchical method. Grid is for conductivity and thickness of the coating.

The lift-off is determined at a higher frequency, taken

- c) 3-Unknowns: coating thickness, coating conductivity, and lift-off. Two frequencies are needed.
 - Each frequency provides two equations to solve for up to two unknowns. Two frequencies is enough for 3 or 4 unknowns.

d) 3- Unknowns: cladding thickness, blister gap, and lift-off

e) 3- Unknowns: pipe wall permeability, pipe wall thickness, and lift-off

Scanners and Implementation in the plant

Sensor Selection

- Decay rate determined by skin depth at high frequency and sensor dimensions at low frequency
- Large dimensions needed for thick coatings/insulation
- Low frequencies needed to penetrate through steel pipe wall

ASNT EVENTS

(f, left) 5- Unknowns:

- 1. pipe wall permeability,
- 2. pipe wall thickness,
- 3. weather jacket thickness (assume conductivity)
- 4. insulation thickness
- 5. lift-off (distance to weather jacket)

Can't visualize easily

Weather Jacket

Example: Corrosion Imaging on Refinery Piping

Inspection was performed with the pipe in production at high temperature

ASNT EVENTS

CUI Performance Evaluation Results (July 2013)

Internal Corrosion – Sample A

16" Schedule 80 (0.500" wall)

2" insulation with aluminum weather jacket

0.100" max wall loss (20%) over 20-25 inches (full circumference)

Internal Corrosion – Sample B

- 16" Schedule 80 (0.500" wall)
- 2" insulation with aluminum weather jacket
- 0.175" max wall loss (35%) over 20-25 inches (full circumference)

(f, right) 5- Unknowns:

- 1. vessel wall permeability,
- 2. vessel wall thickness,
- 3., 4., permeability and position of wire mesh (simple layer)
- 5. vessel wall permeability

Summary of Elements of Solution and Example Capabilities

Elements of Solution

- 1. Sensor designed to match the modeled response
- 2. Parallel architecture impedance instrument, providing at least 3 simultaneous frequencies
- 3. Rapid Model-Based Multivariate Inverse Method (MIMs)

Example Capabilities

1. Internal and external corrosion imaging through

- Insulation
- Concrete with wire mesh (fireproofing, weight coat)
- Other coatings
- 2. Hydrogen blister imaging (through cladding overlay)
- 3. Buried crack detection
- 4. Coating characterization
- 5. In-line inspection for surface and subsurface defects
- 6. Stress mapping from outside and inside pipelines, structures

